Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech | Year | Semester Supplementary Examinations November-2021 ALGEBRA AND CALCULUS

(Common to all)

Time: 3 hours

Max. Marks: 60

L2

L2

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

Show that the only real number λ for which the system $x + 2y + 3z = \lambda x$; $3x + y + 2z = \lambda y$; $2x + 3y + z = \lambda z$ has non-zero solution is 6 and solve them when $\lambda=6$.

OR

a State Cayley-Hamilton theorem.

2M

12M

10M

Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation and find A^{-1} ? b

UNIT-II

a Express the polynomial $2x^3 + 7x^2 + x$ -6 in power of (x - 2) assigning Taylor's series. 3

L3 **6M**

b Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series

L3 **6M**

for log (sec x).

OR

a Find the stationary points of

L1 6M

 $u(x,y) = \sin x \cdot \sin x \cdot \sin (x+y)$ where $0 < x < \pi$, $0 < y < \pi$ and find the maximum of

u.

b Find the shortest distance from origin to the surface $xyz^2 = 2$.

L1

6M

6M

6M

UNIT-III

Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$

L5

Evaluate $\int_{0}^{\pi} \theta \sin^{8} \theta \cos^{4} \theta d\theta$.

L5 **6M**

OR

Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$ by converting to polar coordinates.

L3 **6M**

Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates.

L3

UNIT-IV

- 7 a Evaluate the angle between the normal to the surface $xy = z^2$ at the L1 6M points (4,1,2) and (3,3,-3).
 - **b** Find the maximum or greatest value of the directional derivative of $f = x^2yz^3$ at the L1 6M point (2,1,-1).

OR

- 8 a Find 'a' if $\bar{f} = y(ax^2 + z)\vec{i} + x(y^2 z^2)\vec{j} + 2xy(z xy)\vec{k}$ is solenoidal. L1 6M
 - **b** If $\vec{f} = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational then find the **L1** 6M constants \vec{a} , \vec{b} and \vec{c} .

UNIT-V

- 9 **a** If $\bar{F} = (5xy 6x^2)\vec{i} + (2y 4x)\vec{j}$. Evaluate $\int_{c} \bar{F} \cdot d\bar{r}$ along the curve 'c' in xy-plane L5 6M $y = x^3$ from (1,1) to (2,8).
 - **b** Find the work done by a force $\vec{F} = (2y+3)\vec{t} + (xz)\vec{j} + (yz-x)\vec{k}$ when it moves a **L1** 6M particle from (0,0,0)to(2,1,1) along the curve $x = 2t^2$; y = t; $z = t^3$.

OR

10 Verify Stoke's theorem for $\bar{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle bounded by L2 12M the lines $x = \pm a$, $y = \pm b$.

*** END ***